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In this paper we describe the foundation of a spectral/hp method suitable for sim-
ulating viscous compressible flows with shocks on standard unstructured meshes. It
is based on a discontinuous Galerkin formulation for the hyperbolic contributions
combined with a mixed Galerkin formulation for the diffusive contributions. High-
order accuracy is achieved by using a recently developed hierarchical spectral basis.
This basis is formed by combining Jacobi polynomials of high-order weights written
in a new coordinate system that retains a tensor product property and accurate nu-
merical quadrature. The formulation is conservative, and monotonicity is enforced
by high-order limiters and by appropriately lowering the basis order around discon-
tinuities. Convergence results are shown for benchmark solutions of the advection,
Euler, and Navier–Stokes equations that demonstrate exponential convergence of the
new method. Flow simulations for subsonic and supersonic flows are also presented
that demonstrate discretization flexibility usingh − p type refinement. Unlike other
high-order methods the new method uses standard finite volume meshes consisting
of arbitrary triangulizations. c© 1998 Academic Press

1. INTRODUCTION

There has been recently an interest in computational aerodynamics to extend finite
volume methods to high-order accuracy. This is due primarily to the shift of emphasis
from steady inviscid Euler flow simulations toward accurate simulations oftime-dependent,
viscousflows (see [1, 2]). Also, new fields such as computational electromagnetics for
aerospace design involve the solution of time-dependent highly oscillatory solutions for
which high-order discretization is more efficient [3]. In particular, for thelong-time in-
tegration of time-dependent solutions it has been argued in [4] that high-order numerical
methods provide the most cost-effective approach.
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There are several fundamental issues that limit such a straightforward extension of finite
volume or other low-order methods to high-order in the context of aerodynamic simulations.
First,monotonicityis not preserved in high-order methods in discretizing hyperbolic conser-
vation laws. Second,conservativityis not easily implemented. Third,geometric complexity
requires the use of unstructured meshes. Fourth,computational complexityis increased
significantly.

Despite these difficulties, progress has been made in the last few years in addressing
these issues. For shock-fitting methods the multidomain spectral methods developed by
Kopriva [5] have been successful in simulating very accurately supersonic flows at very high
Mach numbers [6]. However, their generality is somewhat limited as shock-fitting methods
work best for well defined sharp shocks and relatively regular geometries. For shock-
capturing methods, the issue of monotonicity and the associated Gibbs phenomena caused
by solution discontinuities has been addressed in [7], where nonoscillatory reconstruction
algorithms were developed and implemented in the spectral element context in [8]. Their
implementation, however, in multidimensions is quite difficult. A more robust method was
developed in [9], where a flux-corrected-transport (FCT) limiter was combined with spectral
element discretizations but its computational complexity was two to three times higher than
standard low-order methods.

In these approaches as well as in the work of [10], staggered grids are used to preserve
conservativity, assigning fluxes on one grid and cell averages on the other. This too introduces
extra computational complexity as it relies on expensive cell averaging and reconstruction
procedures. A novel spectral multidomain technique was proposed more recently in [11, 12]
based on the penalty method [13], but this scheme does not preserve conservativity.

High-order methods have been used extensively in transition and turbulence simulations
both for incompressible as well as compressible flows [14, 15], but they are practically lim-
ited to simple geometries and they require special meshes. The spectral element method, as
it was first developed [16, 17], employs anodalspectral basis which, in practice, necessi-
tates the use of relatively undeformed subdomains. For a new numerical method to become
useful for CFD problems of industrial complexity, it has to utilize theexistingtechnology
of mesh generators for unstructured and hybrid meshes [18–20].

In previous work [21, 22] we developed a spectral/hp Galekin method for the numerical
solution of the two- and three-dimensional unsteadyincompressibleNavier–Stokes equa-
tions on unstructured meshes. This formulation was implemented in the codeNεκT αr. A
similar approach was used in [23] in the context of geophysical fluid dynamics applications.
The discretization is based on arbitrary triangulizations/tesselations of (complex-geometry)
domains. On each triangle/tetrahedron a spectral expansion basis is employed consisting
of Jacobi polynomials of mixed weight that accommodate exact numerical quadrature. The
hierarchical expansion basis is of variable order per element and retains the tensor product
property (similar to standard spectral expansions), which is key in obtaining computational
efficiency via the sum factorization technique.

In the current work we develop a new formulation forcompressibleNavier–Stokes solu-
tions employing the aforementioned hierarchical basis for triangular subdomains. In particu-
lar, we develop techniques to deal with monotonicity and conservativity in two-dimensional
domains of arbitrary geometric complexity. Unlike the work for incompressible flows where
a standard Galerkin formulation was employed, here we use adiscontinuousGalerkin formu-
lation to treat the hyperbolic contributions and a mixed discontinuous/continuous Galerkin
formulation to treat the diffusive contributions. Correspondingly, two sets of basis functions
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are employed: the first one is a discontinuous orthogonal basis first proposed by Dubiner
[24]; and the second one is aC0 continuous semi-orthogonal basis used in [21]. The conser-
vativity property is maintained automatically by the discontinuous Galerkin formulation,
whereas monotonicity is controlled by high-order limiters and/or by varying the order of
the the spectral expansion around discontinuities. The formulation for the Euler equations
presented here was motivated by the work on discontinuous finite elements presented in
a series of papers [25–28]. A similar implementation for quadrilateral Legendre spectral
elements was used in [29].

An example of a simulation obtained with the methods developed herein is shown in
Fig. 1 that shows a supersonic flow at Mach number Ma= 2 past a NACA4420 airfoil at
a large angle of attack. The simulation is time-dependent, but after some time the solution
is settled to the steady state shown in the plot. The important point to note here is that
this simulation was obtained on the unstructured mesh of Fig. 2, which is typical of the
meshes generated using standard mesh generator codes, e.g. [30]. To test convergence of the
solution, however,p-refinement is pursued that does not require any remeshing, and thus,
it avoids the overhead associated with the mesh generation. We will return to this flexibility
in discretization for a similar application in Section 6.

The paper is organized as follows: In Section 2 we present the discontinuous and theC0-
continuous spectral basis. In Section 3 we review the discontinuous Galerking formulation,
and in Section 4 we implement it in the context of a multidimensional advection equation;
in Section 5 we apply it to the Euler equations. In Section 6 we develop a mixed Galerkin
formulation and consider the Navier–Stokes equations. Several convergence results and flow
simulations in the subsonic and supersonic regime are presented. We finish in Section 7
with a brief summary.

2. SPECTRAL BASES

To implement the discontinuous Galerking method [31] using spectral discretizations
we need to work with an appropriate expansion basis. To this end, we will adopt the
spectral basis for triangles first developed by Dubiner [24]. This polynomial orthogonal
basis, however, cannot be used in multidomain discretizations if continuity of functions is
required at interelemental interfaces. This is the situation with the Navier–Stokes equations,
where aC0 continuity condition is required in the variational statement. A new basis can then
be derived that can accommodate continuity at the expense of partial loss of orthogonality.
Such a basis has been developed in [32] in the context of spectral element method. It has
been implemented in two and three dimensions in algorithms solving the incompressible
Navier–Stokes equations in [21, 22]. In the following, we review these two spectral bases
as we will use them both: the first one (discontinuous) in the context of the Euler equations;
and the second one (continuous) in the context of the Navier–Stokes equations.

We first define a set of mappings that are useful in defining the triangular bases in terms of
Cartesian coordinates attached to the transformed domain. We define the standard triangular
and rectangular domains as shown in Fig. 3, which are mathematically expressed as

T ≡ {(r, s)| − 1 ≤ r, s; r + s ≤ 0}
R ≡ {(a, b)| − 1 ≤ a, b ≤ 1}.
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FIG. 2. Unstructured mesh for the NACA4420 airfoil supersonic flow shown in the previous figure. The
number of elements in 1128 and each element can support differentp-order.

The rectangular domainR can be mapped into the triangular domainT by the transforma-
tion:

s = b,

r = (1 + a)(1 − b)

2
− 1,

and, similarly, the triangular domainT can be mapped into the rectangular domainR by
the inverse transformation

b = s,

a = 2
1 + r

1 − s
− 1. (1)

2.1. Discontinuous Basis

We wish to define a polynomial basis, denoted byφlm(r, s), so that we can approximate
the function f (r, s) in the domainT , i.e.

f (r, s) =
∑

l

∑
m

f̄ lmφlm(r, s).

Here f̄ lm is the expansion coefficient corresponding to polynomialφlm and(r, s) are the
local coordinates within the triangleT . The polynomial expansion basis for triangular
domains expressed in [24] is orthogonal in the Legendre inner product. The principal idea

FIG. 1. Supersonic flow past a NACA4420 airfoil at 20◦ angle of attack and Mach numberMa= 2. Density
contours and streamlines are plotted.

FIG. 29. Density countours for supersonic flow(Ma= 2) past a cylinder. Low resolution with second-order
elements in the wake.

FIG. 30. Density countours for supersonic flow(Ma= 2) past a cylinder. High resolution with fifth-order
elements in the wake.
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FIG. 3. General rectangle to triangle transformation.

is to express the expansion basis in terms of a function, which is a polynomial in both the
standard coordinates and the transformed coordinates. A Gram–Scmidt orthonormalization
procedure of polynomial powers in the standard triangle applied in the right order results
in the Appel polynomials that form the basis. We briefly review this basis next.

Let us denote byPα,β
l (x) the nth-order Jacobi polynomial in the [−1, 1] interval with

the orthogonality relationship,∫ 1

−1
Pα,β

l (x)Pα,β
m (x)(1 − x)α(1 + x)β dx = δlm, (2)

whereδlm is the Kronecker delta. The triangular orthogonal expansion basis is given by

φlm(r, s) = P0,0
l

(
2
(1 + r )

(1 − s)
− 1

)
(1 − s)l P2l+1,0

m (s).

We note that this is a polynomial in (r, s) since the(1− s)l factor acting on theP0,0
l (2((1+

r )/(1 − s)) − 1) Jacobi polynomial produces anl th-order polynomial in(r, s). (Note that
P0,0 is the often-used Legendre polynomial.) The basis can also be expressed as the product
of two polynomials in(a, b) space; i.e.,

φlm(r, s) = φ1
l

(
2
(1 + r )

(1 − s)
− 1

)
· φ2

lm(s) = φ1
l (a) · φ2

lm(b)

where

φ1
l (a) = P0,0

l (a), φ2
lm(b) = (1 − b)l P2l+1,0

m (b).

Dubiner [24] refers to this property as awarped productto differentiate it from the
standard tensor product associated with quadrilateral domains; it is ageneralizedtensor
product. The significance to this property is that the inner product between two polynomial
bases which both span a two-dimensional space can be expressed as the product of two
one-dimensional inner products multiplied by a constant. This is particularly important
when evaluating integrals involvingφlm(r, s) with itself overT , since it is possible to write
the integral as the product of two line integrals as explained in [21]. Integrals involving the
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inner product ofφlm(r, s) with a function f (r, s) can also be efficiently evaluated using
the sum factorization technique. Finally, we note that the basis is complete in a polynomial
spacePL , wherePL is defined by

PL = Span{r l , sm}(lm)∈Q,

where

Q = {(lm)|0 ≤ l , m; l < L , l + m < M}, L ≤ M.

We also note thatφlm(r, s) is orthogonal in the Legendre internal product defined by

(φlm(r, s), φpq(r, s))T =
∫ ∫

T
φlm(r, s)φpq(r, s) dr ds = δlpδmq.

This can be evaluated after we apply the transormationT 7→ R.

2.1.1. Numerical Integration

Numerical integration will be performed in the rectangleRbased on the(a, b) coordinates
using some variant of Gaussian quadrature. The two varieties explored here will be Gauss
quadrature and Gauss–Lobatto quadrature, both using uniform weight functions. As we shall
see, both versions lead to essentially identical numerical methods, with some differences
in practical implementation.

Let us begin with theGauss quadraturecase. ForL quadrature points it is exact for
polynomials up to order(2L − 1). The ordinates for this quadrature will be denoted byqL ,
andwL will be the weights for 0≤ i ≤ L − 1. In thea-coordinate direction, the quadrature
points will beai = qL

i . For theb-direction, the pointsbj = qM
j will be applied. The inner

product

(φlm, φpq)T = 1

2

∫ 1

−1

( ∫ 1

−1
P0,0

l (a)P0,0
p (a) da

)
(1 − b)l+p+1P2l+1,0

m (t)P2p+1,0
q (b) db

may be exactly computed by the sum

1

2

M−1∑
j =0

(
L−1∑
i =0

P0,0
l

(
qL

i

)
P0,0

p

(
qL

i

)
wL

)(
1 − qM

j

)l+p+1
P2l+1,0

m

(
qM

j

)
P2p+1,0

q

(
qM

j

)
wM

j .

This implies a discrete inner product,

( f, g)T = 1

2

M−1∑
j =0

L−1∑
i =0

wLwM f
(
qL

i , qM
j

)
g
(
qL

i , qM
j

)
. (3)

Projections may be performed with essentially the same technique usingGauss–Lobatto
quadrature. At first it might seem that we might need more quadrature points, as Gauss–
Lobatto withL quadrature points is only accurate for polynomials of order(2L − 3). Two
tricks may be used to avoid this. For thea-variable integration, ifg(a) is an(L − 1) degree
polynomial, all inner products, (

g(a), P0,0
j (a)

)
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for j ≤ L − 2 are calculated exactly by Gauss–Lobatto quadrature. Thus,g(a) can be pro-
jected on{P0,0

0 · · · P0,0
L−2} and may be expressed as

g(a) =
L−2∑
j =0

α j P0,0
j (a) + αL−1P0,0

L−1(a).

All coefficientsα j are known, exceptαL−1, which can be solved for by evaluating at a
particular pointa. Takinga = 1 and using the fact thatP0,0

j (1) = 1, this becomes

αL−1 = g(1) −
L−2∑
j =0

α j .

Theb-direction also can be integrated usingM quadrature points. The trick is to actually
use(M + 1) and note that the pointb= 1 is one of these points, and at that point the integrand
will always be zero, due to the fact that the Jacobian of the tranformationT 7→ R, which is
J = (1 − b)/2, vanishes there. Thus, that particular quadrature point may be ignored. This
is, in fact, equivalent to using Gauss–Radau integration with a weight function of(1− b).

2.1.2. Matrix Notation

Having defined the projection, i.e. inner products, and the numerical quadrature we can
summarize these operations using matrix formalism. For now, we limit the discussion to the
simpler case where Gauss integration is used. As a convention, the mesh points (qL

i , qM
j )

will be ordered with thei index changing fastest, and they will be written as a vector
xk = (qL

k modL , qM
[k/L]), for 0≤ k ≤ L M .

Let

E : f (x, y) 7→ (
f (x0), . . . , f

(
xL(M−1)

))t

be the operator that evaluates functions at the grid points. LetW be the diagonal matrix

Wj j = wL
j modLwM

[ j/L] .

Then the inner product (3) may be written

( f, g)T = (Eg)t W E f.

Let G be the matrix of basis element values,

G jk = v(k modL)([k/L])(x j ),

and S the diagonal inverse mass matrix with ones in the diagonal. Then the projection
operator may be written

EP f = GSGt W E f = E
∑
l ,m

φlm(φlm, f )T .
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2.1.3. Differentiation

Derivative operators are most conveniently constructed for the basis{φlm} by noting that
the basis is spanned by the polynomials and by realizing that the derivative matrices derived
from polynomial interpolation on the quadrature points may be used to compute a derivative
at each grid point.

Let DL be the differentiation matrix

DL :

 P
(
qL

0

)
...

P
(
qL

L−1

)
 7→

 P′(qL
0

)
...

P′(qL
L−1

)
 ,

whereP is a polynomial of orderL − 1 or less (we have dropped the sup-indices), andDM

is the corresponding operator for the pointsqM
0 · · · qM

M−1. Then the derivative operatorsDa

andDb operating on the grid pointsx may be defined

Da =


DL

DL

. . .

DL

 ;

that is,(Da)i j = δ[l/M ][ j/M ] DL
(i modL)( j modL) and

(Db)i j = δ(i modM)( j modM)D
M
[i /L][ j/L] .

In terms of these operators, the operatorDr ≈ ∂/∂r andDs ≈ ∂/∂s may be constructed
by

∂

∂r
= ∂a

∂r

∂

∂a
+ ∂b

∂r

∂

∂b
= 2

1 − b

∂

∂a

and, similarly,

∂

∂s
= a + 1

1 − b

∂

∂a
+ ∂

∂b
,

so

Dr = ADa

Ds = B Da + Db,

whereA andB are diagonal and

Aj j = 2

1 − qM
[ j/L]

,

Bj j = qL
j modL + 1

1 − qM
[ j/L]

.
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2.2. Continuous Basis

The high-order discontinuous basis presented above can be modified to produce aC0

continuous basis for a multidomain discretization. Such a construction can be achieved at
the expense of partial orthogonality loss. The key idea is to decompose the basis into three
sets of modes in two dimensions i.e.,vertices, edges, and interior. The interior modes are
similar to the modes of the orthogonal basis, the vertex modes are linear, and the edge
modes start with quadratic order:

• interior modes(2≤ l , 1≤ m; l < L , l + m< M),

φ interior
lm =

(
1 + a

2

)(
1 − a

2

)
P1,1

l−2(a)

(
1 − s

2

)l (1 + s

2

)
P2l−1,1

m−1 (s);

• edge modes(2≤ l , 1≤ m; l < L , l + m< M),

φside−1
l =

(
1 + a

2

)(
1 − a

2

)
P1,1

l−2(a) ·
(

1 − s

2

)l

φside−2
1m =

(
1 + a

2

)
·
(

1 − s

2

)(
1 + s

2

)
P1,1

m−1(s)

φside−3
1m =

(
1 − a

2

)
·
(

1 − s

2

)(
1 + s

2

)
P1,1

m−1(s);

• Vertex modes,

φvert−A =
(

1 − a

2

)
·
(

1 − s

2

)
φvert−B =

(
1 + a

2

)
·
(

1 − s

2

)
φvert−C = 1 ·

(
1 + s

2

)
.

The location of sides 1, 2, and 3 as well as verticesA, B, andC are indicated in Fig. 4. The
interior modes are zero at the boundaries while edge modes have a nonzero value along one

FIG. 4. Definition of the standard triangle and coordinate system.
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edge and are zero at all vertices. The vertex modes have a unit value at one vertex and decay
linearly to zero at the other vertices. Every mode is a polynomial in(a, b) space as well as
(r, s) space, since anyl th-order polynomialfl (a) is a polynomial in(r, s) when multiplied
by the factor(1 − s)l . As can be seen all polynomials in thea-variable are multiplied by
appropriate factors of(1− s). As a final point we note that along each side the edge modes
have the same shape which allows the basis to be combined to form aC0 expansion by
matching the expansion coefficients of these modes (see [32] for details). This way triangles
with a different order per edge can be used, as long as adjacent edges match.

3. DISCONTINUOUS GALERKIN FORMULATION

We now consider the linear two-dimensional equation for advection of a conserved quan-
tity u in a regionÄ,

∂u

∂t
+ ∇ · F(u) = 0, (4a)

whereF(u) = ( f (u), g(u)) is theflux vector which defines the transport ofu(x, t). In the
standard Galerkin formulation of this equation,u is approximated byuδ anduδ ∈ X δ, where
X δ is a finite-dimensional subspace of the space of compactly supported continuous func-
tions. The variational statement of the Galerkin formulation of (4a) is derived by multiplying
by a test functionv and integrating by parts:∫

Ä

∂uδ

∂t
v dx +

∫
∂Ä

v n̂ · F(uδ) ds−
∫

Ä

∇v · F(uδ) dx = 0. (4b)

The solutionuδ satisfies this equation for allv ∈ X δ. The requirement thatX δ consist
of continuous functions naturally leads to a basis consisting of functions with overlapping
support, which implies Eq. (4b) leads eventually to inverting a large banded matrix. This is
not a trivial task for parallel implementations, and therefore, a different type of formulation
is desirable.

Another consideration from the point of view of advection is that continuous function
spaces are not the natural place to pose the problem. Mathematically, hyperbolic problems of
this type tend to have solutions in spaces of bounded variation. In physical problems, the best
one can hope for in practice is that solutions will be piecewise smooth, that is, be smooth in
regions separated by discontinuities (shocks). The main consideration is that the formulation
presented next preserves conservativity in the element-wise sense automatically, and thus,
we avoid dealing with staggered grids as in the formulation developed in [9].

These considerations suggest immediately a formulation whereX δ may contain dis-
continuous functions. These are typically taken to be polynomial functions within each
“element,” and zero outside the element. Here the “element” is, for example, an individual
triangular regionTi in the computational mesh applied to the problem. Thus, the computa-
tional domainÄ = ∪i Ti , andTi , Tj overlap only on edges as shown in Fig. 5. In summary,
the appropriate approximation space is defined as

X δ = {v ∈ L2(Ä) : v|Ti ∈ P(Ti ) ∀Ti }, (5)

whereP(Ä) is the polynomial space defined on the domainÄ.



                 

336 LOMTEV, QUILLEN, AND KARNIADAKIS

FIG. 5. A computational domainÄ tessellated by trianglesTe.

Contending with the discontinuities requires a somewhat different approach to the varia-
tional formulation. Each element is treated separately, giving a variational statement at each
element(uδ ∈ X δ and∀v ∈ X δ),

∂

∂t
(uδ, v)e +

∫
∂Te

vF(uδ) · n̂ ds− (F(uδ), ∇v)e = 0. (6)

Computations on each element are performedseparately, and the connection between
elements is a result of the way boundary conditions are applied. Here, boundary conditions
are enforced via the fluxF(uδ) that appears in Eq. (6). Because this value is computed
at the boundary between adjacent elements, it may be computed from the value ofuδ

given at either element. These two possible values are denoted here asu−
δ (left) andu+

δ

(right), and the boundary flux writtenf (u−
δ , u+

δ ). Upwinding considerations dictate how
this flux is computed. In the more complicated case of a hyperbolic system of equations, an
approximate Riemann solver would be used to compute a value off, g (in two-dimensions)
based onu−

δ andu+
δ .

To illustrate how the discontinuous Galerkin formulation works, we consider the one-
dimensional version of Eq. (4a), which we put in weak form and integrate by parts (to
simplify notationuδ → u, etc.)

(∂t u, v) − ( f (u), vx) + v f (u)|xR
xL

= 0, (7a)

wherex ∈ [xL , xR], which represents the left and right boundaries of a single element.
The treatment of the boundary terms is important as it justifies theconservativity property

reported earlier. To wit, the last term in Eq. (7a) expands to

v−
R f −

R − v+
L f −

L ,

which implies anupwind treatment (see flux of second term), and the test functionv is
evaluated inside the interval [xL , xR]. Note that f −

L is a function of(u−
L , u+

L ) and similarly
for f −

R . Integrating Eq. (7a) by parts again we obtain

(∂t u, v) + ( fx(u), v) + v−
R f −

R − v+
L f −

L − v−
R f −

R + v+
L f +

L , (7b)

which reduces to the form

(∂t u, v) + ( fx(u), v) + v+
L ( f +

L − f −
L ). (7c)
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This final equation is of the form that is used in [31], and it represents the so-called
weak imposition of boundary conditions (through the jump term). In the case that we use
test functions which are constant along each element (in an equidistant mesh with spacing
1x), we recover the upwind (Euler backwards) finite difference formulation for the linear
advection equation; i.e.,

(∂t u) j + V
uj − u j −1

1x
= 0,

whereV is the constant advection velocity.

4. SCALAR ADVECTION EQUATION

4.1. Implementation

Using the derivative and projection operators described above, it is straightforward to
implement a numerical method for Eq. (4a) using formula (6), which can be rewritten as

∂t (uδ, v)e +
∫

∂Te

v f̃ (u−
δ , u+

δ ) · n̂ ds− (F(uδ), ∇v)e = 0, (8)

where f̃ denotes the surface flux appearing in (6).
Supposeu has an expansion

u =
∑
l ,m

α(l+mL)φlm,

and if we substitute basis elementsφlm for v above and use the discrete inner product(·, ·)e

then we have the equation

∂α

∂t
≈ S[(Dr G)t W E fr (u) + (DsG)t W E fs(u)] − SE

∫
∂T

F · n̂φlm ds.

Now (DcG)t W E fc = Gt Dt
cW E fc = (Gt W)W−1Dt

cW E fc for c= r, s, so the first term may
be efficiently computed by use of transpose derivative operatorsDt

r andDt
s.

The only remaining requirement is a discretization of the boundary integrals
∫

∂T F·n̂φlmds.
If F is interpolated to lie on the Gauss points along edges, then this edge integral may be
handled by Gauss–Legendre integration. There are two reasons for doing this instead of us-
ing the same quadrature (Gauss–Radau, or Gauss–Lobatto) as in the interior. Theoretically,
higher accuracy is needed at the edge quadrature; this is a result of interior integrals being
carried out over a volumeh2, and edge integrals overh. In the error analysis, edge errors
are multiplied by a larger constant. (See [27] for an account of truncation errors.) Another
reason is to avoid the corner points of the triangle in quadrature. For nonlinear problems
computing the flux accurately there may require the solution of a multidimensional Riemann
problem.

An alternative implementation of the discontinuous Galerkin method is possible if (8)
is integrated by parts again; this formulation does not rely upon transposed derivative
operators. The formulation then becomes

∂t (uδ, v)e +
∫

∂Te

v[ f̃ (u−
δ , u+

δ ) − F(uδ)] · n̂ ds+ (v, ∇ · F(uδ))e = 0. (9)
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This formulation is similar to the formulation in one dimension in Eq. (7c) and in [31]. It
is the one that we have implemented in the current work.

4.2. Eigen-Spectrum of the Advection Operator

To understand the stability properties of the numerical discretization described above,
we use the linear advection equation

∂t u + ∇ · (uV) = 0,

whereV is a constant velocity vector.
Figure 6 provides a plot of the spectra of the advection operator on a single standard

triangle, where the left and bottom edges are inflow boundaries and the diagonal edge is the
outflow. This plot changes little as the flow direction is changed fromθ = 0 to θ = 90◦(see
Fig. 7). This numerical method shares the property of one-dimensional Legendre spectral
methods in that the maximum eigenvalue magnitude grows linearly as the polynomial order
(M − 1) increases. Similar to the one-dimensional case, the high degree of nonnormality in
the matrix equations implies that in practice the practical time step in a numerical scheme is
inversely proportional toM2, not M as the von Neumann stability analysis predicts [33]. In
fact, this linear growth of eigenvalue magnitude is destroyed as the problem is perturbed.

For example, consider the advection problem on the meshes in Fig. 10 with an upwind flux
being used forf̃ in Eq. (8), and inflow boundaries on the bottom and left boundaries, outflow
on the top and right. With an upwind flux, the computation on each individual triangle is
very close to the case above with a single triangle case, and the eigenvalue spectrum looks
the same. Iff̃ is changed to be a centered flux, i.e.f̃ (u−

δ , u+
δ ) = f (u−

δ )/2+ f (u+
δ )/2, the

eigenvalue magnitudes will suddenly grow asM2. If the problem is changed to be periodic
on all four sides, or even just periodic in one axis direction, the eigenvalue magnitudes will

FIG. 6. Spectrum for the linear advection operator on a single triangle, for a wave speed of magnitude one
travellingθ = 45◦ from the horizontal (i.e.,V = (cosθ, sinθ)).
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FIG. 7. Maximum eigenvalue magnitude for the linear advection operator on a single triangle for 0≤ θ ≤ 90◦.

grow asM2. Figures 8 and 9 demonstrate both the dependence for this magnitude onθ and
the polynomial orderM for the 2-triangle mesh depicted in Fig. 10A.

4.3. Spectral Convergence

The discretization described above was used to implement a numerical method, using a
third-order TVD Runge–Kutta solver to integrate in time. A periodic convection problem

FIG. 8. Maximum eigenvalue magnitude for the linear advection operator on a two triangle periodic box. A,
centered flux; B, upwind flux for 0≤ θ ≤ 90◦.
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FIG. 9. Eigenvalue magnitude for the two triangle periodic box atθ = 0. The exponent given by a linear
regression fit is 1.88 for the centered flux and 1.91 for the upwind flux.

with θ = 0 and initial condition

u(x) = sin(cos(πx))

was solved for the meshes in Fig. 10. TheL∞ error att = 2π is plotted in Fig. 11. The
time step in all cases was1t = 1/500, except for meshC where1t = 1/1000 was used.
In all cases, the time step provides the ultimate limit on accuracy, which is governed by

FIG. 10. Computational meshes for the convection problem. Dimensions are A,−1≤ y ≤ 1; B,− 1
2
≤ y ≤ 1

2
;

C,− 1
4
≤ y ≤ 1

4
; D, − 1

8
≤ y ≤ 1

8
. In all cases−1≤ x ≤ 1. Quadrature points are shown for ninth-order polynomials.
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FIG. 11. L∞ error for periodic convection on meshesA, B, C, andD.

exponential (spectral) convergence as shown in the plots. The effect of the finite time step
is confirmed by caseC, where reducing the time step by a factor of two increases limiting
accuracy by a factor of 8. This is what one would expect based on the third-order time-
stepping accuracy.

4.4. Limiting

To preserve monotonicity in the solution we can either apply flux limiters or use elements
of zero order. We will describe the latter in the simulations so here we present the limiting
procedure. The method used here is an extension of the one proposed by Cockburnet al. [27]
to high-order accuracy. We give a specific example for third-order accuracy. The basic idea
is to modify function values ofu at the boundary of the element in such a way that the
resulting numerical method obeys a maximum principle. The modification is carried out
essentially by comparing the resulting flux through the element with that which would be
obtained by a stable low-order method. No changes are made in smooth parts of the flow
field, but in areas near shocks, the method performs comparably to a low-order method with
a grid size given by the individual elements.

The limiting algorithm is accomplished in the following way. Values ofu on a sin-
gle element are interpolated on to a grid of 10 evenly spaced points (see Fig. 12). The

FIG. 12. Evenly spaced interpolation points on the standard triangle.
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“cell average” of the mass

ū =
∫

T
u dx

is computed on the local and nearby elements. By comparingū from these different elements,
the nine edge values in Fig. 12 are changed so as to ensure a maximum principle for the
cell averages̄u. Then the value at the center grid point is modified so that the Lagrange
interpolant function has the same total mass asū on the local element.

In order to understand the performance of the limiter and the accuracy of the method for
nonlinear scalar problems, a test problem from Cockburnet al. [27] was used. This consists
of the inviscid Burgers’ equation calculated for a sinusoidal initial condition on a square:

∂t u + (∂x + ∂y)
1

2
u2 = 0 for (t, x, y) ∈ (0, T) × Ä,

u(t = 0, x, y) = 1

4
+ 1

2
sin(π(x + y)) for (x, y) ∈ Ä,

(10)

where the computational domain is defined asÄ = [−1, 1] × [−1, 1] and periodic boundary
conditions are applied.

In order to calculate the nonlinear flux accurately while avoiding aliasing errors, enough
collocation points were used to compute theu2 flux exactly. For example, in the case of
the third-order scheme, whereu is approximated with second-order polynomials,u2 was
computed by

1. projecting from the nine quadrature points to the second-order polynomial basis (with
six modes);

2. evaluating on the 25 quadrature points used for the fourth-order polynomial basis;
3. computingu2 on the 25 quadrature points.

Derivatives would then be computed on the 25 quadrature points, and the result then pro-
jected back to second-order polynomials.

The test problem was computed to timet = 0.1 without limiting and to timet = 0.45 with
limiting applied. At timet = 0.1, the solution is smooth, and theL∞ errors demonstrate
uniform achievement of the theoretical order of accuracy, as can be seen in Table 1. At time
t = 0.45 high accuracy is retained away from the discontinuity, as can be seen in Table 2.

TABLE 1

L∞ Error for Initial Value Problem (10) at Time t = 0.1

h 3rd orderL∞ 4th orderL∞ 1t

1/4 0.0134949 0.00278605 .01
1/8 0.00294017 0.000252722 .01
1/16 0.000450087 1.69009e-05 .005
1/32 6.20611e-05 1.1896e-06 .0025

Order: 2.86 Order: 3.83

Note.Time integration is an insignificant source of error with the
given 1t . The observed order of accuracy (2.86/3.83) is computed
based on the last two data points.
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TABLE 2

L∞ Error for Initial Value Problem (10)

at Time t = 0.45

h 4th orderL∞ 1t

1/4 4.81807e-05 .01
1/8 8.17886e-06 .01
1/16 7.93379e-07 .005
1/32 6.39865e-08 .0025

Order: 3.63

Note. Errors are computed in the region
[−0.2, 0.4] × [−0.2, 0.4].

5. EULER EQUATIONS

The preceding methods can be also applied to systems of equations, whereu in Eq. (4a)
is a vector of conserved quantities. The Euler equations may be written

∂tU + ∂xF(U) + ∂yG(U) = 0,

where

U = [ρ, ρu, ρv, E]t

and(u, v) is the local fluid velocity,ρ the fluid density, andE is the total internal energy.
For an ideal gas the pressurep is related toE by

p = (γ − 1)[E − ρ(u2 + v2)/2].

The fluxF = (F, G) may be written

F = [ρu, ρu2 + p, ρuv, u(E + p)]t

G = [ρv, ρuv, ρv2 + p, v(E + p)]t .

The question that needs to be addressed in order to solve this system using the formulation
(8) is how to compute the upwind flux̃f (u−

δ , u+
δ ). An (approximate) Riemann solver needs

to be applied to arrive at a physical flux across the discontinuities between elements.
The simplest approach is to approximately diagonalize the system. For a one-dimensional

constant-coefficient hyperbolic system

∂tU + A∂xU = 0,

whereA can be diagonalized asA=R3L,

∂tLU + 3∂xLU = 0.

HereR andL are matrices containing the right- and left-eigenvectors ofA, and3 contains
the corresponding eigenvalues in its diagonal. So transforming to variables (LU) decouples
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FIG. 13. Construction of approximate interface flux.

the system of equations creating independent scalar equations that may be treated indi-
vidually. The same approach may be used to approximately decouple multidimensional
nonlinear systems. For example, suppose at a pointp along the common edge of two tri-
anglesT1 and T2 (see Fig. 13)U takes on valuesU1 andU2. For simplicity assume the
common edge is parallel to they axis. Then if we assume that the flow is independent ofy
locally to p, we may ignore they derivative:

∂tU + ∂xF(U) ≈ 0.

This equation may then be approximately be decoupled by taking an average value ofŪ
intermediate betweenU1 andU2, diagonalizingA, where

A = R3L = ∂Ū F(Ū ).

Then upwinding may be performed based on the sign of the eigenvalues3. For example,
the Roe flux splitting [34] then would be

f̃ (U1, U2) = F(U1) + F(U2)

2
+R|3|LU1 − U2

2
.

For a system of equations,limiting may be performed for each component separately.
Better quality solutions are obtained if each element is locally projected to characteristic
variables. The procedure used here is as follows:

1. For each triangle, take the cell averages of the state vectorŪ .
2. Compute using these values the matricesR andL.
3. Project the edge values in figure 12 applyingL to the edge points of adjacent triangles.

Project also the cell averages.
4. Limit each characteristic variable independently using the scalar limiting algorithm.
5. ApplyR to return to conserved variables.
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FIG. 14. Computational domain for internal flow over a semi-circular bump consisting of 26 triangular
elements. The radius of the bump is 0.5.

5.1. Convergence

A benchmark problem that tests the accuracy of the method described above for the
Euler equations is inviscid flow over a semi-circular bump. For adiabatic and irrotational
flow conditions the entropy should remain zero everywhere in the domain. In practice, this
is difficult to achieve with low-order methods because of the numerical boundary layer
creation near the walls due to discretization error. The convergence of the numerically
obtained entropy approaching zero should then determine the order of accuracy of the
method. Figure 14 shows the computational domain used in the current test, which consists
of a parallel channel with a semi-circular bump on the lower wall. The flow parameters
at inflow are chosen to approximate a Mach 0.3 air flow at STP. The top and bottom
walls are specified as reflecting boundary conditions. These were imposed by computing
an adjacent element flux computed from a flow condition with zero normal velocity and
pressure identical to that of the element on the inner surface of the wall. Inflow and outflow
boundary conditions were imposed by specifying an adjacent flux computed using the
reference flow conditions.

Contours of the Mach number are plotted in Fig. 15. The relative error in maximum
entropy is plotted in Fig. 16 and it demonstrates that the numerical error approaches zero
exponentially fast. In Fig. 17 the convergence history at a wall point with coordinates
(x = 4.0, y = 0.0) is plotted; it shows that the method is stable after a very long integration
time. We note here thatno limitingor other filtering is applied and that the expansion order
is the same in each element. Finally, we compare a simulation with expansion order fixed

FIG. 15. Mach contours for inviscid flow over a semi-circular bump. The inlet Mach number isMa= 0.3.
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FIG. 16. Maximum entropy (logarithm) as a function of the expansion order per element. The number of
elements is fixed.

(M = 8) for all elements with a simulation where the elements away from the bump have
orderM = 6 and the elements around the bump have orderM = 8. If variable expansion order
is employed care should be used in the construction of the interface fluxes. In particular, at
the interface between elements the higher of the two values should be used as the low-order

FIG. 17. Convergence history at a wall point(x = 4.0, y = 0.0) demonstrating time-asymptotic stability
(M = 9).
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produces oscillations rendering the numerical solution unstable. The oscillations originate
at exactly the interface if it is not treated properly. The distribution of the error in entropy
for the variable order and the fixed order simulations is shown in Fig. 18. Approximately
the same levels of error are computed in both cases with the large errors located around the
bump. Also, in the variable-order simulation larger entropy errors are seen in the rest of the
domain due to the lower element resolution in that region.

6. NAVIER–STOKES EQUATIONS

In this section we consider the nondimensionalized Navier–Stokes equations, which in
two dimensions can be written in conservation form as

∂

∂t


ρ

ρu
ρv

E

 + ∂

∂x


ρu

ρu2 + p
ρuv

(E + p)u

 + ∂

∂y


ρv

ρvu
ρv2 + p
(E + p)v



= 1

Re∞


∂

∂x


0

2
3µ

(
2∂u

∂x − ∂v
∂y

)
µ

(
∂u
∂y + ∂v

∂x

)
2
3µ

(
2∂u

∂x − ∂v
∂y

)
u + µ

(
∂u
∂y + ∂v

∂x

)
v + κ

γ

Pr∞
∂T
∂x



+ ∂

∂y


0

µ
(

∂u
∂y + ∂v

∂x

)
2
3µ

(
2∂v

∂y − ∂u
∂x

)
2
3µ

(
2∂v

∂y − ∂u
∂x

)
v + µ

(
∂u
∂y + ∂v

∂x

)
u + κ

γ

Pr∞
∂T
∂y




. (11)

Hereµ is the dynamic viscosity andκ is the thermal conductivity. We nondimensionalized
the equations by introducing the following reference quantities (the subscript “∞” denotes
reference values):U∞, ρ∞, µ∞, κ∞, and a reference lengthL.

The reference Prandtl number and Reynolds number are then defined as

Pr∞ = µ∞cp

κ∞
, Re∞ = ρ∞U∞L

µ∞
. (12)

The left-hand side coincides with the Euler equations of the previous section, and the
right-hand side includes the effects of dissipation through the viscosity and thermal con-
ductivity. We can rewrite in compact form the compressible Navier–Stokes equations as

Ut + ∇ · F = Re−1
∞ ∇ · Fν, (13)

whereF andFν correspond to inviscid and viscous contributions, respectively. Splitting
the Navier–Stokes operator in this form allows for a separate treatment of the inviscid and
viscous contributions, which in general exhibit different mathematical properties.
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FIG. 18. Contours of entropy generated due to discretization error for a fixed(M = 8) (top) and a variable
(M = 6–8) (botom) expansion order. The extra errors shown in the lower plot due to the variable-order discretization
are bounded by the largest errors of the upper plot.

6.1. Mixed Spectral/hp Formulation

We will assume here that the Euler term∇ · F has been discretized first using a dis-
continuous Galerkin method, which implies that the solution is formally discontinuous,
i.e.

U ∈ L2(Ä).

With this in mind, we can subsequently discretize the viscous term∇ · Fν using a mixed
Galerkin method involving two sets of test functions, one set inL2(Ä) and the other one in
C0(Ä). We thus consider the parabolic model problem for the scalar fieldu(x, t):

ut = ∇ · (ν∇u) + f, in Ä (14a)

u = g(x, t), in ∂Ä. (14b)

To proceed we introduce the flux variable

q = −ν∇u

with q(x, t) ∈ H(div; Ä), where we define the new functional space as

H(div; Ä) = {v ∈ L2(Ä); ∇ · v ∈ L2(Ä)},
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which is a Hilbert space equipped with the appropriate norm, i.e.

‖v‖H(div;Ä) = {‖v‖2 + ‖∇ · v‖2}1/2.

We can discretize in time first using (for simplicity) a single-step integrator and, also,
substitute in terms of the flux variable to obtain

un+1 − un

1t
= −∇ · qm + f m, in Ä (15a)

qm = −ν∇um in Ä (15b)

un+1 = g(x, tm), on ∂Ä, (15c)

wherem= n, (n + 1) correspond to explicit (implicit) time integration, respectively. The
variational form can now be derived by testing Eq. (15a) with functionsw ∈ L2(Ä). Corre-
spondingly, we test Eq. (15b) against functionsv ∈ H(div; Ä), and subsequently integrate
by parts. The Dirichlet variational problem corresponding to Eqs. (15a), (15b) is then stated
as:

Find (q, u) ∈ H(div; Ä) × L2(Ä) such that

(un+1, w) = (un, w) + 1t [−(∇ · qm, w) + ( f m, w)] ∀w ∈ L2(Ä)

(qm, v) = (∇ · v, um) − (gm, v · n)∂Ä ∀v ∈ H(div; Ä),

wheren is the outward unit normal and parentheses denote standard inner products. For
the implicit scheme the coupled system forq, u has to be solved, whereas for the explicit
scheme, the unknownun + 1 is obtained from the first equation by a simple projection. If no
projection is performed but, instead, the equation is solved in its strong form, then numerical
instabilities develop. This has been verified by numerical experiments.

Next we need to define appropriate polynomial spaces forv, w and corresponding un-
knownsq, u to guarantee stability of the approximation. This problem is similar to the
Stokes problem which is treated using a mixed formulation in [35]. Following similar ar-
guments we choose the polynomial space forq, v to bePN(Äe) and the polynomial space
for u, w to bePN−1(Ä

e). For the numerical quadrature the same Gauss–Lobatto–Jacobi
(Gauss–Radau–Jacobi) points are used for the flux variable as well as for the velocity. An
example of the stability of the approximation with this choice of polynomial spaces is shown
in Fig. 19, where we integrate explicitly the one-dimensional version of (14a) for a long
time. The initial condition corresponds to a step function in the interval [0, 1]. The proper
choice of polynomial space produces the correct solution, whereas polynomial representa-
tion of equal order produces unphysical oscillations, which do not decay in time, as they
should.

The mixed formulation results in exponential convergence of the error. To verify this we
obtained the numerical solution forut = ∇2u in the two-dimensional domain of the semi-
circular bump (see Fig. 14). The exact solutionu = sinx sinye−2t was used and Dirichlet
boundary conditions were applied on all boundaries. The final integration time wast = 1.0
and the time step1t = 10−5 was chosen small to avoid any temporal discretization errors.
Third-order explicit time integration was employed. The plot of theL∞ error is shown in
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FIG. 19. Integration of the parabolic equation with discontinuous initial data for 50,000 time steps with
1t = 10−6. A stable approximation is obtained with polynomial orders 7 and 6 for the flux variable and the
solution, respectively (right), while oscillations prevail with equal polynomial order 7 (left).

Fig. 20 as a function of the expansion order for a fixed number of elements. Exponential
convergence is demonstrated for this curvilinear geometry.

6.2. Convergence and Simulations

We present here numerical solutions of the Navier–Stokes equations using first an analytic
solution in order to demonstrate the exponential convergence of the spectral/hp algorithm
and, subsequently, simulations of external flows in order to demonstrate its flexibility in h-p
refinement and unrefinement procedures.

FIG. 20. Convergence of the mixed spectral/hp method for an exact solution on the semi-circular-bump
domain. The parabolic equation was integrated up to timet = 1 with time step1 = 10−5.
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FIG. 21. L∞ error as a function of the expansion order for an analytic solution of the steady Navier–Stokes
equations obtained in a rectangular domain consisted of eight triangular elements:h corresponds to total energy
E; ◦ corresponds to momentum fluxρu; and4 corresponds to density.

In the first example we use a square domain consisted of eight triangles. On the left and
right sides periodic boundary conditions are assumed and on the top and bottom Dirichlet
boundary conditions are prescribed. The analytic solution has the form

ρ = A + B sin(ωx)

u = C + D cos(ωx) sin(ωy)

T = E + Fy,

whereω = 8π, A= 1, B = 0.1, C = 1, D = 0.04, E = 84, andF = 28. The Navier–Stokes
equations are then integrated using a forcing term consistent with the above solution. In
Fig. 21 we plot theL∞ error (for a fixed number of elements) versus the expansion order
for the conserved quantitiesρ, ρu, and E. We see that exponential accuracy is achieved
with the error in the total energy higher than the errors in the density and momentum flux.
Next we examine the temporal accuracy of the method using an Adams–Bashforth (explicit)
integrator assuming an analytic solution as before but varying in time. More specifically, the
sineterm in the density and the linear term in the temperature are multiplied by sin(10π t),
and the second term in the velocity is multiplied by cos(10π t). The final integration time is
t = 0.2. Numerical solutions were obtained for different sizes of time step, and the results
are summarized in Fig. 22 for first-, second-, and third-order Adams–Bashforth integration.
Correspondingly, first-, second-, and third-order accuracy is achieved.

Next we present simulations of flow past a cylinder at Re= 100 for a subsonic Ma= 0.2
case and a supersonic Ma= 2 case. The objective is twofold: First, to validate the simula-
tion results at the subsonic cases with experimental results and other simulations we have
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FIG. 22. L∞ error as a function of the time step for an analytic solution of the unsteady Navier–Stokes
equations obtained in a rectangular domain consisted of eight triangular elements.

performed with different methods; second, to demonstrate that the presence of shock waves
presents no problem for the new method.

A more systematic study of the flow past a cylinder studying the effect of compressibility
on suppressing the vortex street is presented elsewhere [36]. The simulations were performed
on the domain shown in Fig. 23 along with the triangulization; 462 elements were used and
two sets of simulations were performed one at orderM = 5 and one at orderM = 7.

FIG. 23. Computational domain for subsonic flow past a cylinder; 462 elements are used in the discretization.
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FIG. 24. Instantaneous temperature contours of flow past a cylinder at Re= 100 and Ma= 0.2.

In Fig. 24 we plot contours of temperature of the instantaneous field that shows the von
Karman vortex street observed in low Mach number flows. The lateral and streamwise spac-
ing of vortices agrees with simulation results using theNεκT αr code documented in [21].
The Strouhal number (nondimensional frequency) is St= 0.165, in excellent agreement with
the experimental results reported in [37]. In Figs. 25 and 26 we plot the lift and drag coeffi-
cients as a function of time, indicating the separate contributions due to pressure and viscous
forces. The peak-to-peak amplitude of the lift coefficient is 0.67, in good agreement with in-
compressible simulations (0.68), and the average drag coefficient is 1.37, in good agreement
with the experimental value 1.35 and with simulations of the corresponding incompressible
flow reported in [38]. The base pressure coefficient is−0.73, again in good agreement with
the experimental value−0.73 [39] and with the incompressible simulations−0.72.

Finally, in Fig. 27 we plot the centerline average velocity versus the streamwise distance
for both the low and high resolution as well as for another simulation based on a spectral

FIG. 25. Lift coefficient (solid line) as a function of time for flow past a cylinder at Re= 100 and Ma= 0.2.
Shown with dash line is the pressure contribution and with dot line is the viscous contribution.
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FIG. 26. Drag coefficient (solid line) as a function of time for flow past a cylinder at Re= 100 and Ma= 0.2.
Shown with dash line is the pressure contribution and with dot line is the viscous contribution.

element (collocation) formulation for subsonic flows [40]. These simulations were tested
for possible differences if an upwind, instead of a Roe approximate flux is used, and also
if the arithmetic mean state, instead of the average Roe state, is used in the calculations.
Similar results were obtained for Ma= 0.7. As expected at these low Mach numbers no
differences were found.

Unlike the subsonic flow, the supersonic flow is steady at Re= 100. In particular, we have
performed a time-dependent simulation at Mach number Ma= 2 on the unstructured mesh

FIG. 27. Average centerline velocity in the wake of flow past a cylinder at Re= 100 and Ma= 0.2. Shown
with solid line is the high resolution simulation(M = 7), with dash line the low resolution simulation(M = 5),
and with dot line a simulation using a spectral element collocation scheme due to Beskok and Karniadakis [40].
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FIG. 28. Computational domain for supersonic flow past a cylinder; 1132 elements are used in the discre-
tization.

shown in Fig. 28. The discretization is chosen on purpose to be irregular to demonstrate the
robustness of the proposed method in handling non-Delaunay triangulizations. In Fig. 29
we plot density contours from a simulation with variable resolution, i.e.M = 1 in front of
the shock andM = 3 behind the shock. The quality of the solution can be improved by
p-refinement as shown in Fig. 30, where we useM = 6 in the wake.

7. SUMMARY

A discontinuous-Galerkin spectral/hp element method on triangles has been successfully
applied to the computation of inviscid compressible flow. It was combined with a mixed
Galerkin formulation for computing viscous compressible flows. Exponential convergence
is space and third-order accuracy in time were demonstrated for analytic solutions of the ad-
vection, Euler, and Navier–Stokes equations. A limiting procedure may be used to stabilize
the method in the presence of shocks. The applied limiting procedure in this case basi-
cally causes the method to degenerate to first-order accuracy within the shocked element.
Adaptiveh-refinement at that location then is necessary.

The method is characterized by algorithms comparable in efficiency to those used on
quadrilateral elements because of the tensor-product property of the triangular spectral
basis employed. The main computational expense is due to the inversion of the global mass
matrix in the computation of the viscous term. In ongoing work we have addressed this issue
and we have been able to also formulate a discontinuous Galerkin method for the second-
order elliptic equation. This suggests that only local mass matrix inversions are necessary
and that the discontinuous basic (instead of theC0 basis) can be employed. Because of its
orthogonality the local mass matrices are diagonal and their inversion is trivial.

The method has been implemented in parallel—most of the preceding test cases were
calculated on up to eight nodes on an IBM SP2 using MPI. An embarrassingly parallel
domain-decomposition algorithm is used for this fully explicit method, so very high parallel
efficiencies may be expected for sufficiently large problems. Because high-order elements
may be used, these parallel efficiencies may be achieved without necessarily using a large
number of elements per node or large data-sets.
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Additional geometric flexibility here has been gained by the use of triangular elements. It
is fairly clear that there is some penalty in terms of performance for doing this. Theoretical
operations counts will probably be higher by a factor of 2 over standard quadrilaterals in an
equivalent computational domain. One should note, however, that there is no reason why
triangular and quadrilateral elements may not be combined. Large uniform volumes in a flow
field would then tend to be blocked out with quadrilaterals, and regions near the boundaries,
regions undergoing adaptive refinement, or regions requiring gradients in refinement might
then benefit from the geometric flexibility of triangles. Such work on spectral/hp methods
on polymorphic domains is currently underway [41].
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