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In this paper we describe the foundation of a spectral/hp method suitable for sim-
ulating viscous compressible flows with shocks on standard unstructured meshes. It
is based on a discontinuous Galerkin formulation for the hyperbolic contributions
combined with a mixed Galerkin formulation for the diffusive contributions. High-
order accuracy is achieved by using a recently developed hierarchical spectral basis.
This basis is formed by combining Jacobi polynomials of high-order weights written
in a new coordinate system that retains a tensor product property and accurate nu-
merical quadrature. The formulation is conservative, and monotonicity is enforced
by high-order limiters and by appropriately lowering the basis order around discon-
tinuities. Convergence results are shown for benchmark solutions of the advection,
Euler, and Navier—Stokes equations that demonstrate exponential convergence of the
new method. Flow simulations for subsonic and supersonic flows are also presented
that demonstrate discretization flexibility using- p type refinement. Unlike other
high-order methods the new method uses standard finite volume meshes consisting
of arbitrary triangulizations. © 1998 Academic Press

1. INTRODUCTION

There has been recently an interest in computational aerodynamics to extend
volume methods to high-order accuracy. This is due primarily to the shift of emph
from steady inviscid Euler flow simulations toward accurate simulatiotimefdependent,
viscousflows (see [1, 2]). Also, new fields such as computational electromagnetics
aerospace design involve the solution of time-dependent highly oscillatory solution:
which high-order discretization is more efficient [3]. In particular, for lbeg-timein-
tegration of time-dependent solutions it has been argued in [4] that high-order nume
methods provide the most cost-effective approach.
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There are several fundamental issues that limit such a straightforward extension of fi
volume or other low-order methods to high-order in the context of aerodynamic simulatio
First,monotonicityis not preserved in high-order methods in discretizing hyperbolic conse
vation laws. Seconaonservativityis not easily implemented. Thirgeometric complexity
requires the use of unstructured meshes. Foudmputational complexitis increased
significantly.

Despite these difficulties, progress has been made in the last few years in addres
these issues. For shock-fitting methods the multidomain spectral methods develope:
Kopriva [5] have been successful in simulating very accurately supersonic flows at very h
Mach numbers [6]. However, their generality is somewhat limited as shock-fitting methc
work best for well defined sharp shocks and relatively regular geometries. For sho
capturing methods, the issue of monotonicity and the associated Gibbs phenomena c:
by solution discontinuities has been addressed in [7], where nonoscillatory reconstruc
algorithms were developed and implemented in the spectral element context in [8]. Tl
implementation, however, in multidimensions is quite difficult. A more robust method w.
developedin[9], where aflux-corrected-transport (FCT) limiter was combined with spect
element discretizations but its computational complexity was two to three times higher tl
standard low-order methods.

In these approaches as well as in the work of [10], staggered grids are used to pres
conservativity, assigning fluxes on one grid and cell averages on the other. This too introdi
extra computational complexity as it relies on expensive cell averaging and reconstruc
procedures. A novel spectral multidomain technigue was proposed more recently in [11,
based on the penalty method [13], but this scheme does not preserve conservativity.

High-order methods have been used extensively in transition and turbulence simulat
both for incompressible as well as compressible flows [14, 15], but they are practically li
ited to simple geometries and they require special meshes. The spectral element methe
it was first developed [16, 17], employshadal spectral basis which, in practice, necessi-
tates the use of relatively undeformed subdomains. For a new numerical method to bec
useful for CFD problems of industrial complexity, it has to utilize &xéstingtechnology
of mesh generators for unstructured and hybrid meshes [18-20].

In previous work [21, 22] we developed a spectral/hp Galekin method for the numeri
solution of the two- and three-dimensional unsteadympressibléNavier—Stokes equa-
tions on unstructured meshes. This formulation was implemented in the\fegtd ar. A
similar approach was used in [23] in the context of geophysical fluid dynamics applicatio
The discretization is based on arbitrary triangulizations/tesselations of (complex-geome
domains. On each triangle/tetrahedron a spectral expansion basis is employed consi
of Jacobi polynomials of mixed weight that accommodate exact numerical quadrature.
hierarchical expansion basis is of variable order per element and retains the tensor prc
property (similar to standard spectral expansions), which is key in obtaining computatio
efficiency via the sum factorization technique.

In the current work we develop a new formulation émmpressiblé&Navier—Stokes solu-
tions employing the aforementioned hierarchical basis for triangular subdomains. In parti
lar, we develop techniques to deal with monotonicity and conservativity in two-dimensiol
domains of arbitrary geometric complexity. Unlike the work forincompressible flows whe
astandard Galerkin formulation was employed, here we dseantinuousalerkin formu-
lation to treat the hyperbolic contributions and a mixed discontinuous/continuous Galer
formulation to treat the diffusive contributions. Correspondingly, two sets of basis functio
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are employed: the first one is a discontinuous orthogonal basis first proposed by Dul
[24]; and the second one iS22 continuous semi-orthogonal basis used in [21]. The conse
vativity property is maintained automatically by the discontinuous Galerkin formulatic
whereas monotonicity is controlled by high-order limiters and/or by varying the order
the the spectral expansion around discontinuities. The formulation for the Euler equat
presented here was motivated by the work on discontinuous finite elements present
a series of papers [25-28]. A similar implementation for quadrilateral Legendre spe
elements was used in [29].

An example of a simulation obtained with the methods developed herein is show
Fig. 1 that shows a supersonic flow at Mach number=Mapast a NACA4420 airfoil at
a large angle of attack. The simulation is time-dependent, but after some time the soll
is settled to the steady state shown in the plot. The important point to note here is
this simulation was obtained on the unstructured mesh of Fig. 2, which is typical of
meshes generated using standard mesh generator codes, e.g. [30]. To test convergenc
solution, howeverp-refinement is pursued that does not require any remeshing, and tl
it avoids the overhead associated with the mesh generation. We will return to this flexib
in discretization for a similar application in Section 6.

The paper is organized as follows: In Section 2 we present the discontinuous &4 the
continuous spectral basis. In Section 3 we review the discontinuous Galerking formula
and in Section 4 we implement it in the context of a multidimensional advection equati
in Section 5 we apply it to the Euler equations. In Section 6 we develop a mixed Gale
formulation and consider the Navier—Stokes equations. Several convergence results an
simulations in the subsonic and supersonic regime are presented. We finish in Sect
with a brief summary.

2. SPECTRAL BASES

To implement the discontinuous Galerking method [31] using spectral discretizati
we need to work with an appropriate expansion basis. To this end, we will adopt
spectral basis for triangles first developed by Dubiner [24]. This polynomial orthogo
basis, however, cannot be used in multidomain discretizations if continuity of function
required at interelemental interfaces. This is the situation with the Navier—Stokes equat
where a&C° continuity condition is required in the variational statement. A new basis can tt
be derived that can accommodate continuity at the expense of partial loss of orthogon
Such a basis has been developed in [32] in the context of spectral element method.
been implemented in two and three dimensions in algorithms solving the incompres:
Navier—Stokes equations in [21, 22]. In the following, we review these two spectral bz
as we will use them both: the first one (discontinuous) in the context of the Euler equati
and the second one (continuous) in the context of the Navier—Stokes equations.

We first define a set of mappings that are useful in defining the triangular bases in terr
Cartesian coordinates attached to the transformed domain. We define the standard triau
and rectangular domains as shown in Fig. 3, which are mathematically expressed as

T={r9l—-1<r,sr+s<0}
R={@b|—-1<ab<l1}.
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FIG. 2. Unstructured mesh for the NACA4420 airfoil supersonic flow shown in the previous figure. T
number of elements in 1128 and each element can support differemter.

The rectangular domaiR can be mapped into the triangular domaiy the transforma-
tion:

s=0Dh,
i (1+a)(ld—b) _

1’
2

and, similarly, the triangular domaif can be mapped into the rectangular domR@iby
the inverse transformation

b=s,
1+r

a=2———1 1
1_< (1)

2.1. Discontinuous Basis

We wish to define a polynomial basis, denotedgyy(r, ), so that we can approximate
the functionf (r, s) in the domain, i.e.

Fr.9=> > findm(,s).
| m

Here f_|m is the expansion coefficient corresponding to polynomigland (r, s) are the
local coordinates within the triangl€. The polynomial expansion basis for triangulal
domains expressed in [24] is orthogonal in the Legendre inner product. The principal

FIG. 1. Supersonic flow past a NACA4420 airfoil at2@ngle of attack and Mach numbigla= 2. Density
contours and streamlines are plotted.

FIG. 29. Density countours for supersonic flaMa= 2) past a cylinder. Low resolution with second-order
elements in the wake.

FIG. 30. Density countours for supersonic floWla=2) past a cylinder. High resolution with fifth-order
elements in the wake.
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FIG. 3. General rectangle to triangle transformation.

is to express the expansion basis in terms of a function, which is a polynomial in both
standard coordinates and the transformed coordinates. A Gram—Scmidt orthonormaliz
procedure of polynomial powers in the standard triangle applied in the right order resi
in the Appel polynomials that form the basis. We briefly review this basis next.

Let us denote b)Pf”"g(x) the nth-order Jacobi polynomial in the-[1, 1] interval with
the orthogonality relationship,

1
/ PP (x) P2 (x)(1 — x)* (1 + X)? dX = 8im, @)
-1

wheres|, is the Kronecker delta. The triangular orthogonal expansion basis is given by

A4r)
1-9

P (r,s) = PO (2 - 1) (1—9)P2+10(),

We note that this is a polynomial in,(s) since the(1 — s)' factor acting on th@,o‘o(Z((l +
r)/(1—s)) — 1) Jacobi polynomial produces é&th-order polynomial inr, s). (Note that
P%0is the often-used Legendre polynomial.) The basis can also be expressed as the pre
of two polynomials in(a, b) space; i.e.,

a+n

_ a1
Pim(r, S) = ¢ <2(1_ 9

) - 2,(s) = (@) - $Z, (D)
where
ot@ = P*%@), ¢2,(b) = (1—Db) P2 0b).

Dubiner [24] refers to this property asvearped productto differentiate it from the
standard tensor product associated with quadrilateral domains; geéseralizedensor
product. The significance to this property is that the inner product between two polynon
bases which both span a two-dimensional space can be expressed as the product c
one-dimensional inner products multiplied by a constant. This is particularly importe
when evaluating integrals involvingy, (r, s) with itself overT, since it is possible to write
the integral as the product of two line integrals as explained in [21]. Integrals involving t
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inner product ofpm(r, s) with a function f (r, s) can also be efficiently evaluated using
the sum factorization technique. Finally, we note that the basis is complete in a polyno
spaceP,, whereP, is defined by

= Sparir', s"} im0,
where
Q={(m0<I,ml<L,I+m< M}, L<M.

We also note thap (r, s) is orthogonal in the Legendre internal product defined by

(dim(r,S), Ppq(r, S)T =//T A (r, S)Ppq(r, 8) dr ds = §pdmg.

This can be evaluated after we apply the transormdfies R.

2.1.1. Numerical Integration

Numerical integration will be performed in the rectanBlbased on thé, b) coordinates
using some variant of Gaussian quadrature. The two varieties explored here will be G
quadrature and Gauss—Lobatto quadrature, both using uniform weight functions. As we
see, both versions lead to essentially identical numerical methods, with some differe
in practical implementation.

Let us begin with theGauss quadraturease. For. quadrature points it is exact for
polynomials up to orde@2L — 1). The ordinates for this quadrature will be denotedjby
andw" will be the weights for G<i < L — 1. In thea-coordinate direction, the quadrature
points will bea; =g". For theb-direction, the point®; :qj’\" will be applied. The inner
product

1

1
(Dim, Ppg)T = % / ( / HO’O(a)Pg’O(a)da) (1— b)!+PHPA+L0(t) PZPH0(b) db
- -1

1

may be exactly computed by the sum

l -1
E Z (Z P|OO q| P°°(q. ) )(1—qJ-M)HpHPéHl’O(q]M)P§p+l’0(qJ'M)wJM~

j=0 i=0
This implies a discrete inner product,

MlLl

(f.or =3 ZZw w (g, q")g(g". a"). 3)

]0|O

Projections may be performed with essentially the same technique@aums—Lobatto
quadrature. At first it might seem that we might need more quadrature points, as Ga
Lobatto withL quadrature points is only accurate for polynomials of ok@é&r— 3). Two
tricks may be used to avoid this. For theariable integration, ifj(a) is an(L — 1) degree
polynomial, all inner products,

(9(@). P°(a))
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for j <L — 2 are calculated exactly by Gauss—Lobatto quadrature. Ttascan be pro-
jected on{P"° ... P2%) and may be expressed as
L-2
g@ =Y a;PP%@ +a_1P*% (@)

j=0

All coefficientsaj are known, excepd —1, which can be solved for by evaluating at a
particular pointa. Takinga = 1 and using the fact thétjo'o(l) =1, this becomes

L-2
oL_1= g(l) — ZO[] .
j=0

Theb-direction also can be integrated usikigguadrature points. The trick is to actually
use(M + 1) and note that the poibt= 1 is one of these points, and at that pointthe integran
will always be zero, due to the fact that the Jacobian of the tranform@tienR, which is
J =(1- b)/2, vanishes there. Thus, that particular quadrature point may be ignored. T
is, in fact, equivalent to using Gauss—Radau integration with a weight functidn-eb).

2.1.2. Matrix Notation

Having defined the projection, i.e. inner products, and the numerical quadrature we
summarize these operations using matrix formalism. For now, we limit the discussion to
simpler case where Gauss integration is used. As a convention, the mesh tmbjm}g)(
will be ordered with the index changing fastest, and they will be written as a vecto
Xic = (G moaL» Ak/Ly)» fOr 0=k <L M.

Let

E:f,y) > (fxo), ..., f(xemn))'
be the operator that evaluates functions at the grid pointsALke the diagonal matrix
Wjj = w}_mode[’\JA/L]'
Then the inner product (3) may be written
(f, 91 = (EQ'WEH.
Let G be the matrix of basis element values,
Gk = vkmodL)qk/LD Xj),

and S the diagonal inverse mass matrix with ones in the diagonal. Then the project
operator may be written

EPf =GSGWEf=E>  ¢m(em. ).

I,m
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2.1.3. Differentiation

Derivative operators are most conveniently constructed for the pagisby noting that
the basis is spanned by the polynomials and by realizing that the derivative matrices de
from polynomial interpolation on the quadrature points may be used to compute a deriv:
at each grid point.

Let D" be the differentiation matrix

P(as) P’(dg)
Dh: : > : :
P(ar_y) P’(at_y)
whereP is a polynomial of ordet. — 1 or less (we have dropped the sup-indices), Bfd

is the corresponding operator for the poig}$- - - gl ;. Then the derivative operatoB,
and Dy, operating on the grid pointsmay be defined

DL
DL
Da = . 5

that is, (Da)ij = 1 /mitj/M) D moaL ) j moar) and
M
(Db)ij = S(i modM)(j modM) Dp/|_][j/|_]~

In terms of these operators, the operddpr~ 3/9r and Ds~ 9/9ds may be constructed
by
d o0dad  dbo 2 9

or —oroa ardb _ 1-bda
and, similarly,

0 a+18+8
s 1—boa ob’

so
D = AD,

Ds = BDa + Dy,

whereA andB are diagonal and

A 2

i = M

1=aiu
_ qJLmodL +1

Sy
1-ajy
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2.2. Continuous Basis

The high-order discontinuous basis presented above can be modified to progfice :
continuous basis for a multidomain discretization. Such a construction can be achieve
the expense of partial orthogonality loss. The key idea is to decompose the basis into t
sets of modes in two dimensions i.eertices, edges, and interiofhe interior modes are
similar to the modes of the orthogonal basis, the vertex modes are linear, and the e
modes start with quadratic order:

e interiormodeg2<l,1<m;l <L,l +m< M),

|
Bl = (—1;"") <—1 > a) R@ (—1 ~ S) (—125) PRI

e edge modeg2<l,1<m;l <L, +m< M),

o1 (lt+a)/l-a\_is 1-s)\
= (557) (5o (55°)
i:]cjie—Zz (1—{2-8.) ) <1;S>(l—£s> Péfl(s)
o= (1;a> : (1;S>(1;S> Prl1(9);

e \Vertex modes,
l1—a 1-s
vert—A __ .
o= (550)- ()

vert-B __ l+a . 1-s
o= (50 (%)

1+s
ver=C _ 1. )
¢ ( 2 >

The location of sides 1, 2, and 3 as well as vertie8, andC are indicated in Fig. 4. The
interior modes are zero at the boundaries while edge modes have a nonzero value alon

Side 3

Side 1

a=—.1 ;=1

FIG. 4. Definition of the standard triangle and coordinate system.
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edge and are zero at all vertices. The vertex modes have a unit value at one vertex and
linearly to zero at the other vertices. Every mode is a polynomi@,iiv) space as well as
(r, s) space, since aryh-order polynomialf| (a) is a polynomial in(r, s) when multiplied
by the factor(1 — s)'. As can be seen all polynomials in thevariable are multiplied by
appropriate factors dfL — s). As a final point we note that along each side the edge maoc
have the same shape which allows the basis to be combined to f@heapansion by
matching the expansion coefficients of these modes (see [32] for details). This way triar
with a different order per edge can be used, as long as adjacent edges match.

3. DISCONTINUOUS GALERKIN FORMULATION

We now consider the linear two-dimensional equation for advection of a conserved q
tity u in a region,

2—1: +V-F(u) =0, (4a)
whereF (u) = (f (u), g(u)) is theflux vector which defines the transportwfx, t). In the
standard Galerkin formulation of this equatiorns approximated bys andu; € X5, where
X; is a finite-dimensional subspace of the space of compactly supported continuous 1
tions. The variational statement of the Galerkin formulation of (4a) is derived by multiplyi
by a test functiorv and integrating by parts:

5
/ﬂvder/ vﬁ-F(ug)ds—/Vv-F(ua)dx:O. (4b)
Q ot a0 Q

The solutionu; satisfies this equation for alle X' 5. The requirement that’s consist
of continuous functions naturally leads to a basis consisting of functions with overlapy
support, which implies Eq. (4b) leads eventually to inverting a large banded matrix. Thi
not a trivial task for parallel implementations, and therefore, a different type of formulat
is desirable.

Another consideration from the point of view of advection is that continuous functi
spaces are not the natural place to pose the problem. Mathematically, hyperbolic proble
this type tend to have solutions in spaces of bounded variation. In physical problems, the
one can hope for in practice is that solutions will be piecewise smooth, that is, be smoo
regions separated by discontinuities (shocks). The main consideration is that the formul
presented next preserves conservativity in the element-wise sense automatically, anc
we avoid dealing with staggered grids as in the formulation developed in [9].

These considerations suggest immediately a formulation wAgrenay contain dis-
continuous functions. These are typically taken to be polynomial functions within e:
“element,” and zero outside the element. Here the “element” is, for example, an indivic
triangular regionT; in the computational mesh applied to the problem. Thus, the compt
tional domain = U; T;, andT;, T; overlap only on edges as shown in Fig. 5. In summar
the appropriate approximation space is defined as

Xs={v e L2(2):v|Ti € P(T;) VTi}, ®)

whereP () is the polynomial space defined on the dom@in
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FIG.5. A computational domai tessellated by triangl€k.

Contending with the discontinuities requires a somewhat different approach to the va
tional formulation. Each element is treated separately, giving a variational statement at ¢
element(us € X5 andVv € Xy),

2(u,s,v)eJr/ vF(us) - Ads— (F(us), Vv)e = 0. (6)
at e

Computations on each element are perforreeparately and the connection between
elements is a result of the way boundary conditions are applied. Here, boundary condit
are enforced via the fluk (us) that appears in Eq. (6). Because this value is compute
at the boundary between adjacent elements, it may be computed from the valgie o
given at either element. These two possible values are denoted heje(last) and u;
(right), and the boundary flux writtefi(u;, uy). Upwinding considerations dictate how
this flux is computed. In the more complicated case of a hyperbolic system of equations
approximate Riemann solver would be used to compute a valfiegqin two-dimensions)
based oru; andu; .

To illustrate how the discontinuous Galerkin formulation works, we consider the on
dimensional version of Eq. (4a), which we put in weak form and integrate by parts
simplify notationus — u, etc.)

(Bu, v) — (f(u), vx) +vf(WF =0, (7a)

wherex € [x, Xg], which represents the left and right boundaries of a single element.
The treatment of the boundary terms is important as it justifiesghservativity property
reported earlier. To wit, the last term in Eq. (7a) expands to

vrfr — o fL
which implies anupwindtreatment (see flux of second term), and the test funatids
evaluated inside the intervat[, xg]. Note thatf " is a function of(u,, u;") and similarly
for f5. Integrating Eq. (7a) by parts again we obtain
(@u, v) + (fx(u), v) +vg fg — v f —vrfr + o [, (7b)
which reduces to the form

(Beu, v) + (fx(u), v) + v (fF — ). (7c)
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This final equation is of the form that is used in [31], and it represents the so-ca
weak imposition of boundary conditions (through the jump term). In the case that we
test functions which are constant along each element (in an equidistant mesh with sp
AX), we recover the upwind (Euler backwards) finite difference formulation for the line
advection equation; i.e.,

—Uj_1

uj
Gw; +V Ax =0,

whereV is the constant advection velocity.

4. SCALAR ADVECTION EQUATION

4.1. Implementation

Using the derivative and projection operators described above, it is straightforwar
implement a numerical method for Eq. (4a) using formula (6), which can be rewritten

at(Ug,U)e—i—/ vf(ug,ugr)-ﬁds—(F(ua),Vv)ezo, (8)
aTe

where f denotes the surface flux appearing in (6).
Supposel has an expansion

u= Z ad+mL)Pim,
I,m

and if we substitute basis elememts for v above and use the discrete inner produche
then we have the equation

2—‘: ~ 9(D;G)'WE f (u) + (DsG)'W E §(u)] — SE/ F - Agimds.
oT

Now (D:G)'W E f,=G'DIW E f, = (G'W)WD!W E . forc=r, s, so the firstterm may
be efficiently computed by use of transpose derivative oper&bendD}.

The only remaining requirementis a discretization of the boundary integtﬁsﬁquds.
If Fis interpolated to lie on the Gauss points along edges, then this edge integral me
handled by Gauss—Legendre integration. There are two reasons for doing this instead
ing the same quadrature (Gauss—Radau, or Gauss—Lobatto) as in the interior. Theoret
higher accuracy is needed at the edge quadrature; this is a result of interior integrals |
carried out over a volumi?, and edge integrals ovéx In the error analysis, edge errors
are multiplied by a larger constant. (See [27] for an account of truncation errors.) Ano
reason is to avoid the corner points of the triangle in quadrature. For nonlinear probl
computing the flux accurately there may require the solution of a multidimensional Riem
problem.

An alternative implementation of the discontinuous Galerkin method is possible if
is integrated by parts again; this formulation does not rely upon transposed deriv:
operators. The formulation then becomes

0t (Us, v)e —|—/ [ f~(u5‘, uy) —F(us)] -Ads+ (v, V- F(Us))e = 0. 9)
0T
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This formulation is similar to the formulation in one dimension in Eq. (7¢) and in [31]. |
is the one that we have implemented in the current work.

4.2. Eigen-Spectrum of the Advection Operator

To understand the stability properties of the numerical discretization described abc
we use the linear advection equation

ogu+ V- (@uv) =0,

whereV is a constant velocity vector.

Figure 6 provides a plot of the spectra of the advection operator on a single stanc
triangle, where the left and bottom edges are inflow boundaries and the diagonal edge i
outflow. This plot changes little as the flow direction is changed ffea0 to 6 = 90°(see
Fig. 7). This numerical method shares the property of one-dimensional Legendre spe
methods in that the maximum eigenvalue magnitude grows linearly as the polynomial or
(M —1) increases. Similar to the one-dimensional case, the high degree of nonnormalit
the matrix equations implies that in practice the practical time step in a numerical schernr
inversely proportional td12, not M as the von Neumann stability analysis predicts [33]. Ir
fact, this linear growth of eigenvalue magnitude is destroyed as the problem is perturb

For example, consider the advection problem onthe meshes in Fig. 10 with an upwind:
being used forf in Eq. (8), and inflow boundaries on the bottom and left boundaries, outflo
on the top and right. With an upwind flux, the computation on each individual triangle
very close to the case above with a single triangle case, and the eigenvalue spectrum |
the same. Iff is changed to be a centered flux, ifqu; , uf) = f (u;)/2+ f(uf)/2, the
eigenvalue magnitudes will suddenly growN$. If the problem is changed to be periodic
on all four sides, or even just periodic in one axis direction, the eigenvalue magnitudes:

M=8 M=12
10 T 15 T T 20
57 07 b e 15
6 - e " e . .° .
.o et 10
I 4 B «® 1 5 — * ...O. -4
1;1 9 _...o i .. ...o 5
g . 0...
i 0 0 0
n 9 ® .o".
a - e — ° .o’
T LA 5 |- Y .0. | -5
y *4 T ‘e =] h * e ..o
[ ) 0. . .... _10
-6 - '.o_ 210 - '.-.. ]
-8 ’.“ .o .. -15
.10 a5 L1 te -20
-12 -8 -4 -18 -14 -10 -6 -24-20-16-12 -8 -4
real real real

FIG. 6. Spectrum for the linear advection operator on a single triangle, for a wave speed of magnitude
travellingd = 45° from the horizontal (i.eY = (cosf, sing)).
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180°

o
< 09z oz 0%

FIG.7. Maximum eigenvalue magnitude for the linear advection operator on a single triangle fér€ 90°.

grow asM?. Figures 8 and 9 demonstrate both the dependence for this magnitddedn
the polynomial ordeM for the 2-triangle mesh depicted in Fig. 10A.

4.3. Spectral Convergence
The discretization described above was used to implement a numerical method, us

third-order TVD Runge—Kutta solver to integrate in time. A periodic convection proble

R 100"

.0g 082
e

FIG. 8. Maximum eigenvalue magnitude for the linear advection operator on a two triangle periodic box
centered flux; B, upwind flux for & 6 < 90°.
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FIG. 9. Eigenvalue magnitude for the two triangle periodic bo¥ at 0. The exponent given by a linear
regression fit is 1.88 for the centered flux and 1.91 for the upwind flux.

with 6 = 0 and initial condition
u(x) = sin(cogmx))
was solved for the meshes in Fig. 10. Thg error att =2 is plotted in Fig. 11. The

time step in all cases wast =1/500, except for mes@ whereAt =1/1000 was used.
In all cases, the time step provides the ultimate limit on accuracy, which is governed

\\ AN \\\? \\\\\
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FIG. 10. Computational meshes for the convection problem. Dimensions ard Ay <1;B, -1 <y <1
C,—i<y=<i;D,—i<y=<iInallcases-1<x <1.Quadrature points are shown for ninth-order polynomials.
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FIG.11. L, error for periodic convection on mesh8sB, C, andD.

exponential (spectral) convergence as shown in the plots. The effect of the finite time
is confirmed by cas€, where reducing the time step by a factor of two increases limitir
accuracy by a factor of 8. This is what one would expect based on the third-order ti
stepping accuracy.

4.4. Limiting

To preserve monotonicity in the solution we can either apply flux limiters or use eleme
of zero order. We will describe the latter in the simulations so here we present the limi
procedure. The method used here is an extension of the one proposed by Cetlb{@i]
to high-order accuracy. We give a specific example for third-order accuracy. The basic
is to modify function values ofi at the boundary of the element in such a way that tf
resulting numerical method obeys a maximum principle. The modification is carried
essentially by comparing the resulting flux through the element with that which would
obtained by a stable low-order method. No changes are made in smooth parts of the
field, butin areas near shocks, the method performs comparably to a low-order method
a grid size given by the individual elements.

The limiting algorithm is accomplished in the following way. Valueswbn a sin-
gle element are interpolated on to a grid of 10 evenly spaced points (see Fig. 12).

' o &
A 4 A4

FIG. 12. Evenly spaced interpolation points on the standard triangle.
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“cell average” of the mass

U:/udx
T

iscomputed on the local and nearby elements. By compaffirogn these different elements,
the nine edge values in Fig. 12 are changed so as to ensure a maximum principle fol
cell averagesi. Then the value at the center grid point is modified so that the Lagran
interpolant function has the same total masa as the local element.

In order to understand the performance of the limiter and the accuracy of the method
nonlinear scalar problems, a test problem from Cocketiad [27] was used. This consists
of the inviscid Burgers’ equation calculated for a sinusoidal initial condition on a square

1
atu+(8x+8y)§u2=0 for (t,x,y) € (0, T) x €,
11 (10)
ut =0,x,y) = 2 + > sin(t(x +vy)) for(x,y) € Q,

where the computational domainis definedas [—1, 1] x [—1, 1] and periodic boundary
conditions are applied.

In order to calculate the nonlinear flux accurately while avoiding aliasing errors, enou
collocation points were used to compute tifeflux exactly. For example, in the case of
the third-order scheme, wheueis approximated with second-order polynomialéwas
computed by

1. projecting from the nine quadrature points to the second-order polynomial basis (v
six modes);

2. evaluating on the 25 quadrature points used for the fourth-order polynomial basis

3. computingu? on the 25 quadrature points.

Derivatives would then be computed on the 25 quadrature points, and the result then
jected back to second-order polynomials.

The test problem was computed to time 0.1 without limiting and to time = 0.45 with
limiting applied. At timet = 0.1, the solution is smooth, and the° errors demonstrate
uniform achievement of the theoretical order of accuracy, as can be seenin Table 1. At 1
t =0.45 high accuracy is retained away from the discontinuity, as can be seen in Table

TABLE 1
Le° Error for Initial Value Problem (10) at Time t=0.1

h 3rd orderL> 4th orderL> At
1/4 0.0134949 0.00278605 .01
1/8 0.00294017 0.000252722 .01
1/16 0.000450087 1.69009e-05 .005
1/32 6.20611e-05 1.1896e-06 .0025
Order: 2.86 Order: 3.83

Note.Time integration is an insignificant source of error with the
given At. The observed order of accuracy (2.86/3.83) is computed
based on the last two data points.
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TABLE 2
Le° Error for Initial Value Problem (10)
at Time t=0.45
h 4th orderL> At
1/4 4.81807e-05 .01
1/8 8.17886e-06 .01
1/16 7.93379e-07 .005
1/32 6.39865e-08 .0025
Order: 3.63

Note. Errors are computed in the region
[-0.2,0.4] x [-0.2,0.4].
5. EULER EQUATIONS

The preceding methods can be also applied to systems of equations,uvhétg. (4a)
is a vector of conserved quantities. The Euler equations may be written

U + 3xF(U) + 3,G(U) = 0,

where

U =[p, pu, pv, E]'

and(u, v) is the local fluid velocity the fluid density, and is the total internal energy.
For an ideal gas the pressypes related toE by

p=(y— DIE - p(W®+v%)/2].
The fluxF = (F, G) may be written

F = [pu, pu?+ p, puv, u(E + p)]!
G = [pv, puv, pv?+ p, v(E + p)]*.

The question that needs to be addressed in order to solve this system using the formu
(8) is how to compute the upwind fluk(u; , u;’). An (approximate) Riemann solver need:
to be applied to arrive at a physical flux across the discontinuities between elements.

The simplest approach is to approximately diagonalize the system. For a one-dimens
constant-coefficient hyperbolic system

U+ AdU =0,
whereA can be diagonalized as=RAL,
h LU+ AdLU = 0.

HereR andL are matrices containing the right- and left-eigenvector&,andA contains
the corresponding eigenvalues in its diagonal. So transforming to varidhlgsieécouples
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T T;

FIG. 13. Construction of approximate interface flux.

the system of equations creating independent scalar equations that may be treated
vidually. The same approach may be used to approximately decouple multidimensic
nonlinear systems. For example, suppose at a goadbng the common edge of two tri-
anglesT; and T, (see Fig. 13U takes on value$); andU,. For simplicity assume the
common edge is parallel to theaxis. Then if we assume that the flow is independent of
locally to p, we may ignore the derivative:

U + oxF(U) = 0.

This equation may then be approximately be decoupled by taking an average value «
intermediate betweeld; andU,, diagonalizingA, where

A=RAL = FQU).

Then upwinding may be performed based on the sign of the eigenvaluesr example,
the Roe flux splitting [34] then would be

F(U1) + F(Uy2) U — Uz

(U1, Uy) = 5 +RIAIL= 5.

For a system of equationbimiting may be performed for each component separately
Better quality solutions are obtained if each element is locally projected to characteri:
variables. The procedure used here is as follows:

1. For each triangle, take the cell averages of the state wdctor

2. Compute using these values the matriResnd L.

3. Projectthe edge values in figure 12 applyihtp the edge points of adjacent triangles.
Project also the cell averages.

4. Limit each characteristic variable independently using the scalar limiting algorithr

5. Apply R to return to conserved variables.
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FIG. 14. Computational domain for internal flow over a semi-circular bump consisting of 26 triangu
elements. The radius of the bump is 0.5.

5.1. Convergence

A benchmark problem that tests the accuracy of the method described above fo
Euler equations is inviscid flow over a semi-circular bump. For adiabatic and irrotatic
flow conditions the entropy should remain zero everywhere in the domain. In practice,
is difficult to achieve with low-order methods because of the numerical boundary lg
creation near the walls due to discretization error. The convergence of the numeri
obtained entropy approaching zero should then determine the order of accuracy o
method. Figure 14 shows the computational domain used in the current test, which cor
of a parallel channel with a semi-circular bump on the lower wall. The flow paramet
at inflow are chosen to approximate a Mach 0.3 air flow at STP. The top and bot
walls are specified as reflecting boundary conditions. These were imposed by comp
an adjacent element flux computed from a flow condition with zero normal velocity ¢
pressure identical to that of the element on the inner surface of the wall. Inflow and out
boundary conditions were imposed by specifying an adjacent flux computed using
reference flow conditions.

Contours of the Mach number are plotted in Fig. 15. The relative error in maxim
entropy is plotted in Fig. 16 and it demonstrates that the numerical error approaches
exponentially fast. In Fig. 17 the convergence history at a wall point with coordina
(x=4.0, y=0.0) is plotted; it shows that the method is stable after a very long integrati
time. We note here thaio limiting or other filtering is applied and that the expansion ord
is the same in each element. Finally, we compare a simulation with expansion order

20

M

15 [ 0.596674
0.463859
0.331044
0.290969
0.198229

0.0654133

10 F

05|

0.0 =
0

FIG. 15. Mach contours for inviscid flow over a semi-circular bump. The inlet Mach numbdais: 0.3.
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FIG. 16. Maximum entropy (logarithm) as a function of the expansion order per element. The number
elements is fixed.

(M =8) for all elements with a simulation where the elements away from the bump ha
orderM = 6 and the elements around the bump have dvtler8. If variable expansion order

is employed care should be used in the construction of the interface fluxes. In particula
the interface between elements the higher of the two values should be used as the low-

~5.5%10-°

v~velocity

~6x10-%

—6.5%x10"8 -1

] ol NN AP SN Ll
80 100 120 140 160
Time

FIG. 17. Convergence history at a wall poitk =4.0, y=0.0) demonstrating time-asymptotic stability
(M=9).
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produces oscillations rendering the numerical solution unstable. The oscillations origi
at exactly the interface if it is not treated properly. The distribution of the error in entrc
for the variable order and the fixed order simulations is shown in Fig. 18. Approximat
the same levels of error are computed in both cases with the large errors located arout
bump. Also, in the variable-order simulation larger entropy errors are seen in the rest o
domain due to the lower element resolution in that region.

6. NAVIER-STOKES EQUATIONS

In this section we consider the nondimensionalized Navier—Stokes equations, whic
two dimensions can be written in conservation form as

o pu pv
u 9 u? 9 u
Dl O ek |0 e
ot | ov X puv ay | pv°+p
E (E+ pu (E+ pw
0
2 9 3
r sn(25 —5)
==5—19 7o 3 v
Re, | ax (G + 5
2 3 v 3 v aT
S5 — ut (s + 5)v+res i
0
9 Jv
5 1(Gy + 5)
+— 2 w8 . (11)
dy su(25 — 5%)
2 v ) ) v T

Hereu is the dynamic viscosity andis the thermal conductivity. We nondimensionalize
the equations by introducing the following reference quantities (the subsseiptienotes
reference values) ., po, oo, Koo, @Nd a reference length

The reference Prandtl number and Reynolds number are then defined as

c
Pr, = £ Re,

Koo Mo

UL
— p°°_°°_ (12)

The left-hand side coincides with the Euler equations of the previous section, anc
right-hand side includes the effects of dissipation through the viscosity and thermal «
ductivity. We can rewrite in compact form the compressible Navier—Stokes equations

U +V -F=Rel!V.-F, (13)
whereF andF” correspond to inviscid and viscous contributions, respectively. Splitti

the Navier—Stokes operator in this form allows for a separate treatment of the inviscid
viscous contributions, which in general exhibit different mathematical properties.
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FIG. 18. Contours of entropy generated due to discretization error for a fikee: 8) (top) and a variable
(M = 6-8) (botom) expansion order. The extra errors shown in the lower plot due to the variable-order discretize
are bounded by the largest errors of the upper plot.

6.1. Mixed Spectral/hp Formulation

We will assume here that the Euler teivh- F has been discretized first using a dis-
continuous Galerkin method, which implies that the solution is formally discontinuot
ie.

Ue L3Q).

With this in mind, we can subsequently discretize the viscous ®rnr" using a mixed
Galerkin method involving two sets of test functions, one séti(f2) and the other one in
CO%(). We thus consider the parabolic model problem for the scalardigid):

Uu=V-wvu+ f, inQ (14a)
u=g(,t), in 0Q2. (14b)
To proceed we introduce the flux variable
q=—vVu
with q(x, t) € H(div; ), where we define the new functional space as

H(div; Q) = {v e L%(Q); V-v € L2(Q)},
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which is a Hilbert space equipped with the appropriate norm, i.e.
IVIlH@iviey = {IVIZ 4+ 11V - V22,

We can discretize in time first using (for simplicity) a single-step integrator and, al
substitute in terms of the flux variable to obtain

un-»—l —un
AT =-vV.-gd"+f" inQ (15a)
gq" = —vvu" in Q (15b)
™t = g(x, t™), onag, (15¢)

wherem=n, (n+ 1) correspond to explicit (implicit) time integration, respectively. Th
variational form can now be derived by testing Eq. (15a) with functiomsL?($2). Corre-
spondingly, we test Eq. (15b) against functians H (div; €2), and subsequently integrate
by parts. The Dirichlet variational problem corresponding to Egs. (15a), (15b) is then st
as:

Find (g, u) € H(div; Q) x L?(R) such that

U™t w) = W, w) + At[—(V-q", w) + (™, w)] VYw € L)
@™ v) = (V-v,u™ — (@, V- N)ya Vv e H(div; Q),

wheren is the outward unit normal and parentheses denote standard inner products
the implicit scheme the coupled system fpiu has to be solved, whereas for the explici
scheme, the unknowut +1 is obtained from the first equation by a simple projection. If n
projection is performed but, instead, the equation is solved in its strong form, then nume
instabilities develop. This has been verified by numerical experiments.

Next we need to define appropriate polynomial spaces far and corresponding un-
knownsq, u to guarantee stability of the approximation. This problem is similar to t
Stokes problem which is treated using a mixed formulation in [35]. Following similar
guments we choose the polynomial spacegfor to bePy (2€) and the polynomial space
for u, w to bePn_1(R2°). For the numerical quadrature the same Gauss—Lobatto—Jac
(Gauss—Radau—Jacobi) points are used for the flux variable as well as for the velocity
example of the stability of the approximation with this choice of polynomial spaces is shc
in Fig. 19, where we integrate explicitly the one-dimensional version of (14a) for a Ic
time. The initial condition corresponds to a step function in the interval [0, 1]. The proj
choice of polynomial space produces the correct solution, whereas polynomial repres
tion of equal order produces unphysical oscillations, which do not decay in time, as |
should.

The mixed formulation results in exponential convergence of the error. To verify this
obtained the numerical solution far = V2u in the two-dimensional domain of the semi-
circular bump (see Fig. 14). The exact solutios: sinx sinye 2 was used and Dirichlet
boundary conditions were applied on all boundaries. The final integration time-wa®
and the time steprt = 10~ was chosen small to avoid any temporal discretization erroi
Third-order explicit time integration was employed. The plot of the error is shown in
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FIG. 19. Integration of the parabolic equation with discontinuous initial data for 50,000 time steps wi
At=1075. A stable approximation is obtained with polynomial orders 7 and 6 for the flux variable and t
solution, respectively (right), while oscillations prevail with equal polynomial order 7 (left).

Fig. 20 as a function of the expansion order for a fixed number of elements. Exponer
convergence is demonstrated for this curvilinear geometry.

6.2. Convergence and Simulations

We present here numerical solutions of the Navier—Stokes equations using firstan ana
solution in order to demonstrate the exponential convergence of the spectral/hp algori
and, subsequently, simulations of external flows in order to demonstrate its flexibility in |
refinement and unrefinement procedures.

C_| | 1 ) | ) L L | ' 1 L 1 7
4 6 8 10
Number of Modes

FIG. 20. Convergence of the mixed spectral/hp method for an exact solution on the semi-circular-bu
domain. The parabolic equation was integrated up to timd with time stepA = 1075.
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FIG. 21. L., error as a function of the expansion order for an analytic solution of the steady Navier—Stc
equations obtained in a rectangular domain consisted of eight triangular elemMemsesponds to total energy
E; o corresponds to momentum flwu; andA corresponds to density.

In the first example we use a square domain consisted of eight triangles. On the lef
right sides periodic boundary conditions are assumed and on the top and bottom Diri
boundary conditions are prescribed. The analytic solution has the form

o = A+ Bsin(wx)
u = C + D coqwX) sin(wy)
T=E+Fy,

wherew=8r, A=1,B=0.1,C=1, D=0.04, E =84, andF =28. The Navier—Stokes
equations are then integrated using a forcing term consistent with the above solutio
Fig. 21 we plot thel , error (for a fixed number of elements) versus the expansion or
for the conserved quantities pu, and E. We see that exponential accuracy is achieve
with the error in the total energy higher than the errors in the density and momentum |
Next we examine the temporal accuracy of the method using an Adams—Bashforth (exg
integrator assuming an analytic solution as before but varying in time. More specifically,
sineterm in the density and the linear term in the temperature are multiplied {0sit),
and the second term in the velocity is multiplied by dd¥rt). The final integration time is
t =0.2. Numerical solutions were obtained for different sizes of time step, and the res
are summarized in Fig. 22 for first-, second-, and third-order Adams—Bashforth integrat
Correspondingly, first-, second-, and third-order accuracy is achieved.

Next we present simulations of flow past a cylinder atREOO for a subsonic M& 0.2
case and a supersonic M& case. The objective is twofold: First, to validate the simule
tion results at the subsonic cases with experimental results and other simulations we
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FIG. 22. L., error as a function of the time step for an analytic solution of the unsteady Navier—Stok
equations obtained in a rectangular domain consisted of eight triangular elements.

performed with different methods; second, to demonstrate that the presence of shock w
presents no problem for the new method.

A more systematic study of the flow past a cylinder studying the effect of compressibil
on suppressing the vortex street is presented elsewhere [36]. The simulations were perfo
on the domain shown in Fig. 23 along with the triangulization; 462 elements were used
two sets of simulations were performed one at ofdes 5 and one at ordeM =7.
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FIG. 23. Computational domain for subsonic flow past a cylinder; 462 elements are used in the discretizati
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FIG. 24. Instantaneous temperature contours of flow past a cylinder at/R® and Ma= 0.2.

In Fig. 24 we plot contours of temperature of the instantaneous field that shows the
Karman vortex street observed in low Mach number flows. The lateral and streamwise ¢
ing of vortices agrees with simulation results usingMerx 7 ar code documented in [21].
The Strouhal number (nondimensional frequency) is 81165, in excellent agreement with
the experimental results reported in [37]. In Figs. 25 and 26 we plot the lift and drag co
cients as a function of time, indicating the separate contributions due to pressure and vic
forces. The peak-to-peak amplitude of the lift coefficientis 0.67, in good agreement witk
compressible simulations (0.68), and the average drag coefficientis 1.37, in good agree
with the experimental value 1.35 and with simulations of the corresponding incompress
flow reported in [38]. The base pressure coefficient@73, again in good agreement with
the experimental value 0.73 [39] and with the incompressible simulations.72.

Finally, in Fig. 27 we plot the centerline average velocity versus the streamwise diste
for both the low and high resolution as well as for another simulation based on a spe

02 -

02

165 170 175

FIG. 25. Lift coefficient (solid line) as a function of time for flow past a cylinder at=R&00 and Ma=0.2.
Shown with dash line is the pressure contribution and with dot line is the viscous contribution.



354 LOMTEYV, QUILLEN, AND KARNIADAKIS

08 ]

06 I .

FIG. 26. Drag coefficient (solid line) as a function of time for flow past a cylinder atR€0 and Ma=0.2.
Shown with dash line is the pressure contribution and with dot line is the viscous contribution.

element (collocation) formulation for subsonic flows [40]. These simulations were tes
for possible differences if an upwind, instead of a Roe approximate flux is used, and &
if the arithmetic mean state, instead of the average Roe state, is used in the calculat
Similar results were obtained for Ma0.7. As expected at these low Mach numbers nc
differences were found.

Unlike the subsonic flow, the supersonic flow is steady atR@0. In particular, we have
performed a time-dependent simulation at Mach numbesNan the unstructured mesh
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FIG. 27. Average centerline velocity in the wake of flow past a cylinder aER®0 and Ma=0.2. Shown
with solid line is the high resolution simulatiqiM = 7), with dash line the low resolution simulatigivl = 5),
and with dot line a simulation using a spectral element collocation scheme due to Beskok and Karniadakis [:
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FIG. 28. Computational domain for supersonic flow past a cylinder; 1132 elements are used in the di
tization

shown in Fig. 28. The discretization is chosen on purpose to be irregular to demonstrat
robustness of the proposed method in handling non-Delaunay triangulizations. In Fic
we plot density contours from a simulation with variable resolution Me= 1 in front of
the shock andv =3 behind the shock. The quality of the solution can be improved |
p-refinement as shown in Fig. 30, where we de- 6 in the wake.

7. SUMMARY

A discontinuous-Galerkin spectral/hp element method on triangles has been succes
applied to the computation of inviscid compressible flow. It was combined with a mix
Galerkin formulation for computing viscous compressible flows. Exponential converge
is space and third-order accuracy in time were demonstrated for analytic solutions of thi
vection, Euler, and Navier—Stokes equations. A limiting procedure may be used to stat
the method in the presence of shocks. The applied limiting procedure in this case |
cally causes the method to degenerate to first-order accuracy within the shocked ele
Adaptiveh-refinement at that location then is necessary.

The method is characterized by algorithms comparable in efficiency to those use
quadrilateral elements because of the tensor-product property of the triangular spe
basis employed. The main computational expense is due to the inversion of the global
matrix in the computation of the viscous term. In ongoing work we have addressed this i
and we have been able to also formulate a discontinuous Galerkin method for the sec
order elliptic equation. This suggests that only local mass matrix inversions are nece:
and that the discontinuous basic (instead of@ieasis) can be employed. Because of it
orthogonality the local mass matrices are diagonal and their inversion is trivial.

The method has been implemented in parallel—most of the preceding test cases
calculated on up to eight nodes on an IBM SP2 using MPI. An embarrassingly par:
domain-decomposition algorithm is used for this fully explicit method, so very high para
efficiencies may be expected for sufficiently large problems. Because high-order elen
may be used, these parallel efficiencies may be achieved without necessarily using a
number of elements per node or large data-sets.
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Additional geometric flexibility here has been gained by the use of triangular elements
is fairly clear that there is some penalty in terms of performance for doing this. Theoreti
operations counts will probably be higher by a factor of 2 over standard quadrilaterals ir
equivalent computational domain. One should note, however, that there is no reason
triangular and quadrilateral elements may not be combined. Large uniform volumesin af
field would then tend to be blocked out with quadrilaterals, and regions near the boundal
regions undergoing adaptive refinement, or regions requiring gradients in refinement m
then benefit from the geometric flexibility of triangles. Such work on spectral/hp metho
on polymorphic domains is currently underway [41].
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